Monday, April 16, 2012

What Triggers a Mass Extinction? Habitat Loss and Tropical Cooling Were Once to Blame

The second-largest mass extinction in Earth's history coincided with a short but intense ice age during which enormous glaciers grew and sea levels dropped. Although it has long been agreed that the so-called Late Ordovician mass extinction -- which occurred about 450 million years ago -- was related to climate change, exactly how the climate change produced the extinction has not been known. Now, a team led by scientists at the California Institute of Technology (Caltech) has created a framework for weighing the factors that might have led to mass extinction and has used that framework to determine that the majority of extinctions were caused by habitat loss due to falling sea levels and cooling of the tropical oceans.
The work -- performed by scientists at Caltech and the University of Wisconsin, Madison -- is described in a paper currently online in the early edition of the Proceedings of the National Academy of Sciences.
The researchers combined information from two separate databases to overlay fossil occurrences on the sedimentary rock record of North America around the time of the extinction, an event that wiped out about 75 percent of marine species alive then. At that time, North America was an island continent geologists call Laurentia, located in the tropics.
Comparing the groups of species, or genera, that went extinct during the event with those that survived, the researchers were able to figure out the relative importance of several variables in dictating whether a genus went extinct during a 50-million-year interval around the mass extinction.
"What we did was essentially the same thing you'd do if confronted with a disease epidemic," says Seth Finnegan, postdoctoral scholar at Caltech and lead author of the study. "You ask who is affected and who is unaffected, and that can tell you a lot about what's causing the epidemic."
As it turns out, the strongest predictive factors of extinction on Laurentia were both the percentage of a genus's habitat that was lost when the sea level dropped and a genus's ability to tolerate broader ranges of temperatures. Groups that lost large portions of their habitat as ice sheets grew and sea levels fell, and those that had always been confined to warm tropical waters, were most likely to go extinct as a result of the rapid climate change.
"This is the first really attractive demonstration of how you can use multivariate approaches to try to understand extinctions, which reflect amazingly complex suites of processes," says Woodward Fischer, an assistant professor of geobiology at Caltech and principal investigator on the study. "As earth scientists, we love to debate different environmental and ecological factors in extinctions, but the truth is that all of these factors interact with one another in complicated ways, and you need a way of teasing these interactions apart. I'm sure this framework will be profitably applied to extinction events in other geologic intervals."
The analysis enabled the researchers to largely rule out a hypothesis, known as the record-bias hypothesis, which says that the extinction might be explained by a significant gap in the fossil record, also related to glaciation. After all, if sea levels fell and continents were no longer flooded, sedimentary rocks with fossils would not accumulate. Therefore, the last record of any species that went extinct during the gap would show up immediately before the gap, creating the appearance of a mass extinction.
Finnegan reasoned that this record-bias hypothesis would predict that the duration of a gap in the record should correlate with higher numbers of extinctions -- if a gap persisted longer, more groups should have gone extinct during that time, so it should appear that more species went extinct all at once than for shorter gaps. But in the case of the Late Ordovician, the researchers found that the duration of the gap did not matter, indicating that a mass extinction very likely did occur.
"We have found that the Late Ordovician mass extinction most likely represents a real pulse of extinction -- that many living things genuinely went extinct then," says Finnegan. "It's not that the record went bad and we just don't recover them after that."

Monday, April 9, 2012

Copper Chains: Earth's Deep-Seated Hold On Copper Revealed

Earth is clingy when it comes to copper. A new Rice University study recently published in the journal Science finds that nature conspires at scales both large and small -- from the realms of tectonic plates down to molecular bonds -- to keep most of Earth's copper buried dozens of miles below ground.
"Everything throughout history shows us that Earth does not want to give up its copper to the continental crust," said Rice geochemist Cin-Ty Lee, the lead author of the study. "Both the building blocks for continents and the continental crust itself, dating back as much as 3 billion years, are highly depleted in copper."

Finding copper is more than an academic exercise. With global demand for electronics growing rapidly, some studies have estimated the world's demand for copper could exceed supply in as little as six years. The new study could help, because it suggests where undiscovered caches of copper might lie.

But the copper clues were just a happy accident.

"We didn't go into this looking for copper," Lee said. "We were originally interested in how continents form and more specifically in the oxidation state of volcanoes."

Earth scientists have long debated whether an oxygen-rich atmosphere might be required for continent formation. The idea stems from the fact that Earth may not have had many continents for at least the first billion years of its existence and that Earth's continents may have begun forming around the time that oxygen became a significant component of the atmosphere.

In their search for answers, Lee and colleagues set out to examine Earth's arc magmas -- the molten building blocks for continents. Arc magmas get their start deep in the planet in areas called subduction zones, where one of Earth's tectonic plates slides beneath another. When plates subduct, two things happen. First, they bring oxidized crust and sediments from Earth's surface into the mantle. Second, the subducting plate drives a return flow of hot mantle upwards from Earth's deep interior. During this return flow, the hot mantle not only melts itself but may also cause melting of the recycled sediments. Arc magmas are thought to form under these conditions, so if oxygen were required for continental crust formation, it would mostly likely come from these recycled segments.

"If oxidized materials are necessary for generating such melts, we should see evidence of it all the way from where the arc magmas form to the point where the new continent-building material is released from arc volcanoes," Lee said.

Lee and colleagues examined xenoliths, rocks that formed deep inside Earth and were carried up to the surface in volcanic eruptions. Specifically, they studied garnet pyroxenite xenoliths thought to represent the first crystallized products of arc magmas from the deep roots of an arc some 50 kilometers below Earth's surface. Rather than finding evidence of oxidation, they found sulfides -- minerals that contain reduced forms of sulfur bonded to metals like copper, nickel and iron. If conditions were highly oxidizing, Lee said, these sulfide minerals would be destabilized and allow these elements, particularly copper, to bond with oxygen.

Because sulfides are also heavy and dense, they tend to sink and get left behind in the deep parts of arc systems, like a blob of dense material that stays at the bottom of a lava lamp while less dense material rises to the top.

"This explains why copper deposits, in general, are so rare," Lee said. "The Earth wants to hold it deep and not give it up."

Lee said deciding where to look for undiscovered copper deposits requires an understanding of the conditions needed to overcome the forces that conspire to keep it deep inside the planet.

"As a continental arc matures, the copper-rich sulfides are trapped deep and accumulate," he said. "But if the continental arc grows thicker over time, the accumulated copper-bearing sulfides are driven to deeper depths where the higher temperatures can re-melt these copper-rich dregs, releasing them to rejoin arc magmas."

These conditions were met in the Andes Mountains and in western North America. He said other potential sources of undiscovered copper include Siberia, northern China, Mongolia and parts of Australia.

Lee noted that a high school intern played a role in the research paper. Daphne Jin, now a freshman at the University of Chicago, made her contribution to the research as a high school intern from Clements High School in the Houston suburb of Sugarland.

"The paper really wouldn't have been as broad without Daphne's contribution," Lee said. "I originally struggled with an assignment for her because I didn't and still don't have large projects where a student can just fit in. I try to make sure every student has a chance to do something new, but often I just run out of ideas."

Lee eventually asked Jin to compile information from published studies about the average concentration of all the first-row of transition elements in the periodic table in various samples of continental crust and mantle collected the world over.

"She came back and showed me the results, and we could see that the average continental crust itself, which has been built over 3 billion years of Earth's history in Africa, Siberia, North America, South America, etc., was all depleted in copper," Lee said. "Up to that point we'd been looking at the building blocks of continents, but this showed us that the continents themselves followed the same pattern. It was all internally consistent."

In addition to Jin, Lee's co-authors on the report include Rajdeep Dasgupta, assistant professor of Earth science at Rice; Rice postdoctoral researchers Peter Luffi and Veronique Roux; Rice graduate student Emily Chin; visiting graduate student Romain Bouchet of the École Normale Supérieure in Lyon, France; Douglas Morton, professor of geology at the University of California, Riverside; and Qing-zhu Yin, professor of geology at the University of California, Davis.

Coral Links Ice Sheet Collapse to Ancient 'Mega Flood'

Coral off Tahiti has linked the collapse of massive ice sheets 14,600 years ago to a dramatic and rapid rise in global sea-levels of around 14 metres.
Previous research could not accurately date the sea-level rise but now an Aix-Marseille University-led team, including Oxford University scientists Alex Thomas and Gideon Henderson, has confirmed that the event occurred 14,650-14,310 years ago at the same time as a period of rapid climate change known as the Bølling warming.

The finding will help scientists currently modelling future climate change scenarios to factor in the dynamic behaviour of major ice sheets.

A report of the research is published in this week's Nature.

'It is vital that we look into Earth's geological past to understand rare but high impact events, such as the collapse of giant ice sheets that occurred 14,600 years ago,' said Dr Alex Thomas of Oxford University's Department of Earth Sciences, an author of the paper. 'Our work gives a window onto an extreme event in which deglaciation coincided with a dramatic and rapid rise in global sea levels -- an ancient 'mega flood'. Sea level rose more than ten times more quickly than it is rising now! This is an excellent test bed for climate models: if they can reproduce this extraordinary event, it will improve confidence that they can also predict future change accurately.'

During the Bølling warming high latitudes of the Northern hemisphere warmed as much as 15 degrees Celsius in a few tens of decades. The team has used dating evidence from Tahitian corals to constrain the sea level rise to within a period of 350 years, although the actual rise may well have occurred much more quickly and would have been distributed unevenly around the world's shorelines.

Dr Thomas said: 'The Tahitian coral is important because samples, thousands of years old, can be dated to within plus or minus 30 years. Because Tahiti is an ocean island, far away from major ice sheets, sea-level evidence from its coral reefs gives us close to the 'magic' average of sea levels across the globe, it is also subsiding into the ocean at a steady pace that we can easily adjust for.'

The research is part of a large international consortium, the Integrated Ocean Drilling Program (IODP), and the coral samples were obtained by drilling down to the sea floor from a ship positioned off the coast of Tahiti.

What exactly caused the Bølling warming is a matter of intense debate: a leading theory is that the ocean's circulation changed so that more heat was transported into Northern latitudes.

The new sea-level evidence suggests that a considerable portion of the water causing the sea-level rise at this time must have come from melting of the ice sheets in Antarctica, which sent a 'pulse' of freshwater around the globe. However, whether the freshwater pulse helped to warm the climate or was a result of an already warming world remains unclear.